Phiala Thouvenin, Ph.D.'s Portfolio

Coding Projects and Examples

View My GitHub Profile

Calculating wedge slopes

Module imports

import pims
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from utils import *
## pjt_slope15_prebuilt_062218, high fric baseline parameters
images = pims.ImageSequence('data/*.jpg')
xmin,xmax,ymin,ymax = 95, 5095,300, 1290 # pixel boundaries of image crop
scale=63. #pixels/cm spatial
im_w=images.frame_shape[1]
im_h=images.frame_shape[0]
surfs = 'pjt_slope15_prebuilt_062218_surfnocv_2023.h5'

Examine wedge surfaces

surf = pd.read_hdf(surfs,'wedgetop_00000')
plt.figure(figsize=(15,5))
plt.imshow(images[0][ymin:ymax,xmin:xmax])
plt.plot(surf.x-xmin,-surf.y+im_h-ymin,'k--')
plt.legend(['Surface'])
<matplotlib.legend.Legend at 0x7f6f8e7d3d00>

png

Calculate deformation front position

def deformation_front_mode(surfs,xmin,ymax,im_h,far_edge_count=1000,
                           threshold=10,
                           from_larger=True, vergence='s'):
    '''     
    Examine calcuated surfaces, and determine the surface expression of their
        deformation fronts over the length of an experiment.
         
    Perform calcuation on surface with the retrowedge as the first area that 
        exceeds the average flat topography elevation, and the deformation 
        front defined as the last area that exceeds elevation outside of 
        a specifed range of [sand_elev +/- surfvar].
         
    Calcuated value is only the physical expression of the deformation front, 
        as actual deformation may jump forelandward for a short time 
        before surface expression.         
    '''
    surfs_keys = list(h5py.File(surfs,'r'))
    # determine maxlimum width of profile
    len_x = []
    for i, key in enumerate(surfs_keys):    
        surf = pd.read_hdf(surfs,key)
        if from_larger:
            surf.x = surf.x - xmin
            surf.y = surf.y - (im_h-ymax)
        len_x.append(surf.x.max())
    width = int(max(len_x))    
    
    # place surface in preallocated array
    surface = np.zeros((len(surfs_keys),width))
    for i, key in enumerate(surfs_keys):    
        surf = pd.read_hdf(surfs,key)
        surf = surf.y.dropna().reindex(surf.x, method='nearest').reset_index()
        if from_larger:
            surf.x = surf.x - xmin
            surf.y = surf.y - (im_h-ymax)
        surface[i,np.array(surf.x.values,dtype='int')-1] = surf.y.values
        
    # determine mean height of foreland material on far edge of surface array
    far_edge_mean = surface[:,-far_edge_count:].mean()
    # mask to find area that is within a given elevation of this mean
    mask = (surface > far_edge_mean - threshold) & \
                (surface < far_edge_mean + threshold)
    # set boolean mask on edges to remove edge effects
    mask[:,-far_edge_count:] = True
    
    # different modes for either style of model
    if vergence == 's':
        edge = nd.filters.sobel(mask.astype(float))
        front = []
        for i in range(edge.shape[0]):
            if len(edge[i,:][edge[i,:] > 0]):
                front_loc = np.nonzero(edge[i,:])[0][-1]
                front.append([i,front_loc])
            else:
                front.append([i,np.nan])
        front = pd.DataFrame(front,columns=('frame','x_df'))
    if vergence == 'd':
        mask[:,:far_edge_count] = True
        edge = nd.filters.sobel(mask.astype(float))
        front = []
        for i in range(edge.shape[0]):
            if len(edge[i,:][edge[i,:] > 0]):
                retro_loc = np.nonzero(edge[i,:])[0][0]
                front_loc = np.nonzero(edge[i,:])[0][-1]
                front.append([i,retro_loc,front_loc])
            else:
                front.append([i,np.nan,np.nan])
        front = pd.DataFrame(front,columns=('frame','x_rf','x_df'))
    elif vergence != 's' and vergence != 'd':
        raise ValueError('Choose either singly (s) or doubly (d) vergent mode') 
    return front
front = deformation_front_mode(surfs,xmin,ymax,im_h)
front
frame x_df
0 0 3795
1 1 3795
2 2 3795
3 3 3792
4 4 3789
5 5 3786
6 6 3783
7 7 3780
8 8 3782
9 9 3782
plt.figure(figsize=(15,5))
plt.imshow(images[0][ymin:ymax,xmin:xmax])
plt.plot(surf.x-xmin,-surf.y+im_h-ymin,'k--')
plt.vlines(front.iloc[0].x_df+xmin,0,ymax-ymin)
plt.ylim(ymax-ymin,0)
plt.legend(['Surface','Deformation Front'])
<matplotlib.legend.Legend at 0x7f6f8b70f310>

png

Fit surface of wedge

def slope_deffront(surfs,front,window=81,peak_thres=0.4,
                      scale=70.,plotting=False,sgol=False):
    '''
    FOR SINGLY-VERGENT WEDGES ONLY
    
    Examine calcuated surfaces, and determine the surface expression of their
        deformation fronts over the length of an experiment.
    
    Perform calcuation on Gaussian-filtered surface, as raw surface is noisy
        enough to interfere with properly identifying the deformation front,
        as the last "turn" in the surface, topography decreasing to the left.
    
    Calcuated value may NOT be actual deformation front, as deformation may
        jump forelandward for a short time before surface expression.
    
    THEN, calcuate the slope of the surface BEFORE the deformation front,
    
    
    TODO:
        - modify to calcuate last peak of curvature, to detect the retrowedge
            boundary in doubly-vergent analog models, and calcuate both
            pro- and retro-wedge slopes
    '''
    slope = []
    surfs_keys = list(h5py.File(surfs,'r'))
    for i, key in enumerate(surfs_keys):
        # read each surface
        surf = pd.read_hdf(surfs,key)
        surf = surf.y.dropna().reindex(surf.x, method='nearest').reset_index()
        # calcuate slope of topography BEFORE the deformation front [fronts]
        max_surf = surf[surf.y == surf.y.max()].index.values[0]
        if len(surf[(surf.x <= surf.x[front.iloc[i].x_df]) & (surf.x >= surf.x[max_surf])]) >= 3:
            wedge_topo = surf[(surf.x <= surf.x[front.iloc[i].x_df]) & (surf.x >= surf.x[max_surf])]
        else:
            wedge_topo = surf[(surf.x <= surf.x[front.iloc[i].x_df])]
        m,b = line_fit(wedge_topo.x,wedge_topo.y)
        slope.append(m)
        if plotting:
            plt.figure(figsize=(15,5))
            fitline = wedge_topo.x * m + b
            plt.plot(surf.x,surf.y,'k+',wedge_topo.x,fitline,'r-');
            plt.text(3000,800,f'Slope is {abs(m*180/np.pi)}{chr(176)}')
            plt.axis('scaled')
            plt.ylim([0,1000])
            plt.xlabel('Width')
            plt.ylabel('Height')
            plt.title(f'Slope Fit For Surface: {key}')
            plt.savefig(f'fit_surf_{key}.png',bbox_inches='tight')
            plt.close('all')
    return slope
slopes = slope_deffront(surfs,front,plotting=True)

alt text