Phiala Thouvenin, Ph.D.'s Portfolio

Coding Projects and Examples

View My GitHub Profile

Synthetic Particle Trajectory Velocimetry

Module imports

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import glob
import pims

Load images and Particle Image Velocimetry data

images = pims.ImageSequence('../data/*.jpg')
pfiles = glob.glob('../data/github_test_*.txt')
pfiles.sort()
images
<Frames>
Source: D:\Dropbox\morphagenetests\sptv_code\data\*.jpg
Length: 20 frames
Frame Shape: (150, 250, 3)
Pixel Datatype: uint8
data = pd.read_csv(pfiles[0], skiprows=3, usecols=[0, 1, 2, 3],
                   names=['x', 'y', 'u', 'v'])
plt.imshow(images[0])
plt.quiver(data.x,data.y,data.u,data.v)
<matplotlib.quiver.Quiver at 0x200a3497f40>

png

data = pd.read_csv(pfiles[-1], skiprows=3, usecols=[0, 1, 2, 3],
                   names=['x', 'y', 'u', 'v'])
plt.imshow(images[-1])
plt.quiver(data.x,data.y,data.u,data.v)
<matplotlib.quiver.Quiver at 0x200a3597910>

png

Run main.py to generate particle trajectories

run ../src/main.py
pts = pd.read_csv('../data/pjt_highfric_15deg_glass1cm_071619_crop_artificial_pts_temp.csv')
pts.head()
frame particle x y
0 501.0 0.0 -1.678560 0.168361
1 501.0 1.0 0.753549 4.346883
2 501.0 2.0 0.753549 8.475915
3 501.0 3.0 -0.500503 12.327540
4 501.0 4.0 -0.500503 16.456572

Plot trajectories

 def tp_plot_traj(trajs,images,sample_int=1,particle_int=1,scaled=False,save=False,
                 cmap=plt.cm.copper):
    '''
    Convenience function to plot all trajs in a given dataframe
        with scaled axes.
    Optional settings for plotting every [sample_int] particle location and/or
        every [particle_int] particle, useful for extremely large datasets.
    '''
    f, ax = plt.subplots(figsize=(15,15))
    particles = np.sort(trajs['particle'].unique()[::particle_int])
    trajs = trajs[trajs.particle.isin(particles)]
    # initialize plot 
    #   place ticks outside of plot to avoid covering image
    #   remove right and upper axes to simplify plot
    #   only plot ticks on the left and bottom of plot
    ax.tick_params(axis='y', direction='out')
    ax.tick_params(axis='x', direction='out')
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')
    # plot particle trajs leading up to current fram
    if scaled:
        x = trajs['x']/scale
        y = trajs['y']/scale
    else:
        x = trajs['x']
        y = trajs['y']
    ax.imshow(np.flipud(images[-1]),alpha=0.5)
    ax.scatter(x[::sample_int],y[::sample_int],
               c=trajs['frame'][::sample_int],marker='o',
               s=2, cmap=cmap,lw=0,
               vmin=trajs.frame.min(),vmax=trajs.frame.max())
    plt.axis('scaled')
    if scaled:
        ax.set_xlim([0,im_w/scale])
        ax.set_ylim([0,im_h/scale])
        ax.set_xlabel('Width [cm]')
        ax.set_ylabel('Height [cm]')
    else:
        ax.set_xlim([0,im_w])
        ax.set_ylim([0,im_h])     
        ax.set_xlabel('Width [px]')
        ax.set_ylabel('Height [px]')
    if save:
        plt.savefig('%s_f%05ito%05i.png'%(prefix,trajs.frame.min(),
                                          trajs.frame.max()),dpi=200,
                                          bbox_inches='tight')
        plt.close('all')
tp_plot_traj(pts,images,particle_int=25)

png